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Abstract

Thermal Protection Systems CIVS) of NASA's Space Shuttle External Tank include polyurethane and

polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC

11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural

temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic

insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to
mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion

tests at -253°C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per

square meter, and thermal conductivity tests at cryogenic and elevated temperatures.

Due to environmental concerns, the polyurethane insulation industry and the External Tank Project

are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as

a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production

implementation in 1995. Realizing that the second generation HCF(= blowing agents are an interim
solution, the evaluation of third generation blowing agents with zero ozone depletion potential is

underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in

cryogenic insulations for the External Tank; one option being investigated is the use of water as a
foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic

substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are

easily processed in molding applications. The development criteria, statistical experimental approach,

and resulting foam properties will be presented.

Introduction

The purpose of this study was to evaluate the use of water blown polyurethane based insulations in

cryogenic environments. Success criteria included the following insulation properties: low friability,

good adhesion, cryogenic strain compatibility, dimensional stability, high closed cell content, and

acceptable thermal conductivity. Emphasis was placed on adhesion to an epoxy primed aluminum
substrate and on flexibility at cryogenic temperatures.

External Tank Insulations

The External Tank serves as a cryogenic propellant tank and also as a structural backbone for the

Space Shuttle system. Figure 1 shows the main components of the External Tank; they are a forward

liquid oxygen tank, an intertank, and the aft liquid hydrogen tank. Thermal Protection Systems (TPS) of

the External Tank include high density silicon based ablative resins, polyisocyanurate spray on foam

insulations, and both sprayable and moldable polyurethane insulations. The TPS serves to prevent the
formation of ice and frost on the tank surface, maintain structural temperature limits, and maintain

propellant quality. The polyurethane pour foam was selected as the first target application for the water
blown insulation.
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Industry Studies

Over the past few years, several papers have been presented on the development of rigid foams blown

with carbon dioxide from the water-isocyanate reaction. The industry has found this technically

challenging and economically inviting. Issues associated with these water blown foams include:

increased thermal conductivity, high open cell content, accelerated foam aging, poor dimensional

stability, high friability, and poor adhesion [1,2]. The primary concern lies with the high diffusion rates
of carbon dioxide in the polymer matrix of the foam. The rapid diffusion of carbon dioxide out and the

slower ingress of air components leads to foam shrinkage and higher thermal conductivities [3,4]. The

thermal conductivities of these gases are presented in Table 1. Processing of water blown foams is more

difficult because of the inherently higher viscosities of the polyol components. Several have found that

molding of these foams is complicated by poor flowability and high molding pressures [5-7].

Nevertheless, systems have been developed for use in appliances, vending machines, water heaters,

supermarket display cases, and picnic coolers.

TableI.ThermalConductivityofCellGases
Gas K(_BTU.in/ff2..h."F_

Nitrogen 0.168
Air 0.168

Oxygen 0.170
Carbon Dioxide 0.102

Tdchlo_ofluoromefhane 0.0_

Experimental

Developmental Approach

The polymer structure was modified to incorporate higher molecular weight polyols that could

compensate for the high crosslink density associated with water blown foams without sacrificing

dimensional stability. The experimental sequence was initiated by screening several polyols for their

effect on foam friability, substrate adhesion, and closed cell content. The polyols evaluated are presented

in Table 2. Six polyols were then selected for further study. A statistically based experiment was

designed to evaluate these polyols and determine the optimum ratio required to achieve a dimensionally

stable foam with cryogenic compatibility. Thirty foam formulations were blended, foamed, and tested

with varying levels of each of the six polyols. Three replicate formulations were included in the

experiment to allow estimation of the replicate standard deviation of the foam properties. In each of the
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experimental formulations, isocyanate index was held constant at 150, while surfactant and water levels

were held constant at 2 and 1.25% of the total formulation respectively. Data was analyzed and fitted

with quadratic models. These empirically based models were then used to evaluate the trade-offs in

material properties associated with various polyol ratios.

Table 2. PolyolsEvaluated
Polyol# OH EquivalentWeight

I 246
2 180
3 170
4 119
5 156
6 167
7 200
8 106
9 94
10 330

Foam Preparation

Foams were prepared by preblending the polyol component, and then combining stoichiometric

weights of polyol and polymeric isocyanate for mixing. The room temperature liquid components were

hand mixed for 8 seconds at 12,000 rpm with a Premier Mill Laboratory Dispersator. The reacting

mixture was then poured into paper cups for manual reactivity measurement, or separately into a

Timetech reactivity unit for automatic data acquisition of foam exotherm temperature, foam gelation

pressure, and foam rise height. The catalyst levels for each of the thirty formulations was adjusted to

maintain a constant reactivity for all systems.

Initial polyol screening tests were conducted with room temperature, free rise box pours. Test panels

for the polyol optimization experiment were made in 10"x20"x3" molds. Four room temperature molds
containing an epoxy primed aluminum substrate were poured for each of the thirty formulations. Panels

were cured a minimum of one hour at room temperature before demolding. _ additional 2 week aging

period w,% allowed before test samples were cut and prepared from the panels.

Foam Properties

Table 3 fists the tests conducted on the foam insulations. Emphasis was placed on the results of the

adhesion and cryogenic flexure tests. Bond tensile samples were tested at -196 °, 21 °, and 93°C to
measure substrate adhesion. Four point flexure samples were tested at -196°C. Tensile and flexure tests

are currently being run at -253°C.

Table 3. TestMethods
Foam Property Method Units

Bond Adhesion (I) ASTMD 1623 psi
Compression ASTMD 1621 psi
Density ASTM D 1622 pcf
Friability ASTM C 421 */.massloss
ClosedCellContent ASTM D 2856 % closedcells
ThermalConductivityASTM C 177 BTU.in/ff2.h.°F
Oxygen Index ASTM D 2B63 °/.oxygen
4-PointRexure In-HouseTest psi

Note:(I)Adhesiontoepoxyprimed2219alumlnum alloy

Results

The results of the polyol screening tests are presented in Table 4. The results show a broad range of

foam properties with bond tension values ranging from 20 to over 100 psi in room temperature tests.

Elongation measured in the bond tension tests was used as an indicator of four point flexibility. Based on
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these test results, Polyols 1 through 6 were selected for further study. Table 5 presents the levels at

which the polyols were evaluated in the experiment.

Table4. ResultsofPolyolScreening
Polyol# 21°C Bond Tension% ElongationCompression% ClosedCellsFriability.C_xygenIndex

I 20 18 5 80.7 3,84 21.0
2 79 10 31 91.5 1.34 20.9
3 79 9 31 92.2 0.38 20.8
4 107 11 34 92.6 1.45 21.0
5 78 10 48 93.8 0.39 19.8
6 44 9 33 93.2 1.37 20.9
7 64 9 27 92.2 0.23 20.5
8 38 8 41 93.1 1.27 21.0

Table5. ExperimentalVariables
Variable Range
Polyol 1
Po4yol2
Polyol3
Polyol 4
Potyol5
Potyol 6

0 to30% ofPolyolBlend
0to 100%ofPolyolBlend
0to100% ofPolyolBlend
0to100% ofPolyolBlend
0to100% ofPolyolBlend
0to100% ofPolyolBlend

The thirty formulations evaluated in this experiment had the following constant variables: isocyanate
index of 150, common surfactant, and 1.25% water in the total formulation. Material properties varied

considerably with the change in polyols. Several of the-test panels debonded from the aluminum

substrate with demolding, while others had good substrate adhesion.

Results of the mechanical and physical testing were reduced and analyzed with Echip TM software to

determine the effects of the various polyol ratios on foam properties. The R-square values, indicating

how well the empirical models fit the experimental data, are presented in Table 6. Polyol 1 was found to

have the greatest effect on the foam flow in the molds, and based on the empirical models also
contributed to cryogenic bond tensile strength and four point flexibility. Polyols 3 and 6 contributed to

dimensional stability and improved oxygen index. The optimum formulation having the best

combination of properties, substrate adhesion greater than 50 psi and cryogenic flexibility, was obtained

with the polyol blend consisting of 20% Polyol 1, 50% Polyol 3 and 30% Polyol 6.

Table 6. Degree of Fit of EmpiricalModels
Property Modeled R-square value
Bond Tension, 21°C 0.827
Bond Tension,93°C 0.741
Bond Tendon,-1960C 0.861
4-pointflexure,Stressatfailure 0,814
4-pointFlexure,Strainatfailure 0.878

Figures 2 to 4 are two dimensional contour plots illustrating the effects of polyol ratio on substrate

adhesion at various temperatures. These plots show the detrimental effects of Polyol 1 when used at

levels greater than 30% of the polyol Mend. Figures 5 and 6 show the maximum stress and strain in a

four point flexure test are obtained with Polyol I added at approximately 25% of the polyol blend.

An evaluation of a phosphorous based flame retardant in the water blown foam was conducted. Table

7 presents the effects of the non-reactive flame retardant on the foam properties of gel time_ density, and

oxygen index. The flame retardant was added to the foam system at levels ranging from zero to twenty-
five percent of the total formulation. Based on this limited data, a flame retardant level of 12% was
selected.
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Table7. EffectsofAdded FlameRetardant
% FR Gel(sec) Density Oxygen Index
0 43 2.5 <20.9
4 52 2.5 23.0
7 53 2.5 24.0
10 56 2.5 25.0
15 57 2.5 26.1
20 58 2.6 26.9
25 62 2.8 27.3

Theseoxygenindexvaluesarenotintendedtoreflecthazards
presentedbythisorany othermaterialunderactualfireconditions.

As a result of this study, a water blown molding insulation has been developed with acceptable

mechanical properties at cryogenic temperatures. Table 8 presents data for this insulation, System A, and

a comparable insulation, System B, that is co-blown with CFC 11 and water. The reaction profile of

System A is illustrated in Figure 7 which shows the rise in foam exotherm temperature with time.

Table8.PropediesoftheWaterBlownInsulation
SystemA SystemB

Foam Property Water Blown Control 41)
Density

Free Rise 2.3 2.5
Molded 2.6 3.0

Bond Adhesion (2)
-1960C 63 38
210C 83 64
93°C 49 33

Compression 28 30
Friability I 26
ClosedCellContent 93 87
ThermalConductivity 0.20 0.17
Oxygen Index 25 23

Note:
I.CFC 11and waterco-blown
2.Adhesiontoepoxy primed2219alumlnumalloy

Conclusions

The development of a water blown insulation for use in cryogenic environments required the

development of a polymer network with reduced crosslink density to obtain a low friability insulation

with good adhesion to epoxy primed aluminum substrates. This development work completed with a

molding system will serve as a platform for further development of a sprayable, water blown foam
insulation. Statistically designed experiments have been employed in the evaluation of a catalyst

package for accelerated reactivity suitable in spray formulations, and are currently being used in a

processing sensitivity study to evaluate the parameters of substrate temperature, relative humidity, and
component temperature on foam properties. As industry continues to develop low viscosity and low

permeability polyols, improved surfactants and catalysts, the use of rigid water blown foams in a variety

of applications will grow.
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